
| 3x + 5x | = | 120 |
| 8x | = | 120 |
| x | = | 15 |
| ∠A | = | (3 × 15)° = 45° |
| ∠B | = | (5 × 15)° = 75° |
| But, ∠A + ∠B + ∠C | = | 180° |
| 45° + 75° + ∠C | = | 180° |
| 120° + ∠C | = | 180° |
| ∠C | = | 180° – 120° = 60° |
| ∴ ∠A | = | 45°, ∠B = 75° and ∠C = 60° |

| ∠1 | = | ∠A + ∠B ------- (i) |
| ∠2 | = | ∠B + ∠C ------- (ii) |
| ∠3 | = | ∠C + ∠A ------- (iii) |
| ∠1 + ∠2 + ∠3 | = | 2(∠A + ∠B + ∠C) |
| = | 2 × 180° (∵ sum of the angles of a triangle is 180°) | |
| = | 360° | |
| ∴ ∠1 + ∠2 + ∠3 | = | 360° |


= 20°