Derivation
Conversion from vector form to Cartesian form
We have:
= x
+ y
+ z
,
= x
1
+ y
1
+ z
1
and
= x
2
+ y
2
+ z
2
.
Substituting these values in
=
+ m(
–
), we get:
x
+ y
+ z
= x
1
+ y
1
+ z
1
+ m[(x
2
- x
1
)
+ (y
2
- y
1
)
+ (z
2
- z
1
)
]
Equating the coefficients of
,
and
, we get:
x = x
1
+ m(x
2
– x
1
); y = y
1
+ m(y
2
– y
1
); z = z
1
+ m(z
2
– z
1
) . . . (i)
These are parametric equations of the line. Eliminating the parameter 'm' from (i), we get:
. This is the Cartesian equation of the line.