Derivation
Conversion from vector form to Cartesian form
We have:
= x + y + z,
= x1 + y1 + z1 and
= x2 + y2 + z2.
Substituting these values in = + m( – ), we get:
x + y + z = x1 + y1 + z1 + m[(x2 - x1) + (y2 - y1) + (z2 - z1)]
Equating the coefficients of , and , we get:
x = x1 + m(x2 – x1); y = y1 + m(y2 – y1); z = z1 + m(z2 – z1) . . . (i)
These are parametric equations of the line. Eliminating the parameter 'm' from (i), we get: . This is the Cartesian equation of the line.