Theorem
If P(x, y) is any point on the ellipse whose foci are S and S', then SP + S'P is constant.
Proof:
The equation of the ellipse is given as
(a > b) ...... (1)
Let S, S' be the foci and ZM, Z'M' be the corresponding directrices.
Join SP and S'P. Draw PL perpendicular to X-axis and M'MP perpendicular to the two directrices.
By the definition of the ellipse SP = ePM = e(LZ).
∴ SP
=
e(CZ – CL)
=
∴ SP
=
a – xe
S'P
=
ePM' = e(LZ')
=
e(CL + CZ')
=
=
a + xe
∴ SP + S'P
=
a – xe + a + xe
∴ SP + S'P
=
2a(constant) = Length of the major axis.