Theorem
If P(x, y) is any point on the ellipse whose foci are S and S', then SP + S'P is constant.

Proof:

The equation of the ellipse is given as (a > b) ...... (1)
Let S, S' be the foci and ZM, Z'M' be the corresponding directrices.
Join SP and S'P. Draw PL perpendicular to X-axis and M'MP perpendicular to the two directrices.
By the definition of the ellipse SP = ePM = e(LZ).
∴ SP = e(CZ – CL)
=
∴ SP = a – xe
S'P = ePM' = e(LZ')
= e(CL + CZ')
=
= a + xe
∴ SP + S'P = a – xe + a + xe
∴ SP + S'P = 2a(constant) = Length of the major axis.