
| From the given figure | ||
| ∠POR | = | ∠POQ + ∠QOR |
| = | 30° + 30° | |
| = | 60° | |
∠POR =
(60°)
= 30°

∠AOB =
(60°)
= 30°

|
∠QPR = ∠QSR (angles in the same
segment of the circle)
In ΔPQR, |
||
| ∠QPR + ∠PQR + ∠PRQ | = | 180° |
| ∠QPR + 65° + 15° | = | 180° |
| ∠QPR | = | 180° – 80° |
| ∠QPR | = | 100° |
| ∠QSR | = | 100° |
|
Sol:
![]() In ∠RST, |
||
| ∠RST + ∠SRT | = | ∠RTQ (exterior angle) |
| ∠RST + 30° | = | 120° |
| ∠RST | = | 90° |
| ∠QPR | = | ∠RST (angles in the same segment of a circle) |
| ∴ ∠QPR | = | 90° |
at O = 2 ×
angle
formed by it at C].
| AB | = | AC [given] |
| ∠ADB | = | ∠ADC [each equal to 90°] |
| AD | = | AD [common] |
| Δ ADB | ≅ | Δ ADC [By SAS-congruence] |
| Hence, BD = CD [By cpct]. | ||
| OB | = | OC [radii of the same circle] |
| OD | = | OD [Common] |
| ∴ Δ OBD | ≅ | Δ OCD |
| ⇒ ∠BOD | = | ∠COD [By RHS-congruence] |
| ⇒ ∠BOD | = | ∠BOC |
| ⇒ ∠BOD | = | ∠A [∵ ∠A = ∠BOC] |