In finding the values of limits, some times we obtain the following forms , 0 ×
∞, ∞ – ∞, 00, 1∞,
∞0 which are not defined.
Some standard results on Indeterminate forms
i) If n is a rational number, then
=
n.an – 1
2. Trigonometric limits (where x is measured in radians)
i) ![]() |
ii) ![]() |
|
iii) ![]() |
iv) ![]() |
|
v) ![]() |
vi) ![]() ![]() |
|
vii) ![]() ![]() ![]() ![]() |
viii) ![]() ![]() |
|
ix) ![]() ![]() ![]() ![]() |
x) ![]() ![]() |
|
xi) ![]() ![]() ![]() ![]() |
||
xii) ![]() ![]() ![]() ![]() |
||
xiii) ![]() ![]() ![]() ![]() |
||
xiv) ![]() ![]() |
xv) ![]() ![]() |
|
xvi) ![]() ![]() ![]() ![]() |
||
xvii) ![]() |
||
xviii) ![]() |
||
xix) ![]() |
||
xx) ![]() ![]() |
3. Exponential limits
i) ![]() ![]() |
ii) ![]() ![]() |
iii) ![]() ![]() |
iv) ![]() ![]() |
v) ![]() ![]() |
4. Miscellaneous
i) If ![]() ![]() ![]() ![]() |
= | ![]() |
ii) If ![]() |
= | 1 and
![]() |
![]() ![]() |
= | ![]() |
= | ![]() |
|
= | ![]() |
iii) ![]() ![]() |
iv) ![]() ![]() |
v) ![]() ![]() |
vi) ![]() ![]() |
vii) ![]() ![]() |
viii) ![]() ![]() |
ix) ![]() ![]() |
|
x) ![]() ![]() |
|
xi) ![]() ![]() |
5. Logarithmic limits
i. ![]() ![]() |
ii. ![]() ![]() |
iii. ![]() ![]() |
iv. ![]() ![]() |
v. ![]() ![]() |