(i) | Zn (g) → Zn2+ (g) + 2e– | ΔH = 2680 kJ |
(ii) | Zn (s) → Zn (g) | ΔH = 116 kJ |
(iii) | I2 (g) → 2I (g) | ΔH = 144 kJ |
(iv) | I2 (g) + 2e– → 2I– (g) | ΔH = –288 kJ |
(v) | I2 (s) → I2 (g) | ΔH = 38 kJ |
(vi) | Zn2+ (g) + 2I– (g) → ZnI2 (s) | ΔH =? |
(vii) | Zn (s) + I2 (s) → ZnI2 (s) | ΔH = –204 kJ |
(i) | Zn (s) → Zn (g) | ΔH1 =116 kJ |
(ii) | Zn (g) → Zn2+ (g) | ΔH2 = 2680 kJ |
(iii) | I2 (s) → I2 (g) | ΔH3 = 38 kJ |
(iv) | I2 (g) → 2I (g) | ΔH4 = 144 kJ |
(v) | I (g)+ e– → I– (g) | ΔH5 = –288 kJ |
(vi) | Zn2+ (g) + 2I– (g) → ZnI2 (s) | ΔH6 =? |
This can be given in the form of a table | ||
From the Hess law we know that : | ||
ΔHf | = | ΔH1 + ΔH2 + ΔH3 + ΔH4 + ΔH5 + ΔH6 |
⇒ –204 | = | 116 + 2680 + 38 + 144 – 2(288) + x |
–204 | = | 2978 – 576 + x |
–204 | = | 2402 + x |
x | = | –2606 kJ |
Hence the lattice energy of formation of ZnI2 (s) is –2606 kJ. |